He seizes solitary paper. He holds it towards fire. Twilight. He reads.

46.jpg

They will be custom bugs, designer bugs — bugs that only Venter can create. He will mix them up in his private laboratory from bits and pieces of DNA, and then he will release them into the air and the water, into smokestacks and oil spills, hospitals and factories and your house.

Each of the bugs will have a mission. Some will be designed to devour things, like pollution. Others will generate food and fuel. There will be bugs to fight global warming, bugs to clean up toxic waste, bugs to manufacture medicine and diagnose disease, and they will all be driven to complete these tasks by the very fibers of their synthetic DNA.

Right now, Venter is thinking of a bug. He is thinking of a bug that could swim in a pond and soak up sunlight and urinate automotive fuel. He is thinking of a bug that could live in a factory and gobble exhaust and fart fresh air. […]

The challenge of building a synthetic bacterium from raw DNA is as byzantine as it probably sounds. It means taking four bottles of chemicals — the adenine, thymine, cytosine and guanine that make up DNA — and linking them into a daisy chain at least half a million units long, then inserting that molecule into a host cell and hoping it will spring to life as an organism that not only grows and reproduces but also manufactures exactly what its designer intended. […]

The future, he says, may be sooner than we think. Much of the groundwork is already done. In 2003, Venter’s lab used a new method to piece together a strip of DNA that was identical to a natural virus, then watched it spring to action and attack a cell. In 2008, they built a longer genome, replicating the DNA of a whole bacterium, and in 2010 they announced that they brought a bacterium with synthetic DNA to life. That organism was still mostly a copy of one in nature, but as a flourish, Venter and his team wrote their names into its DNA, along with quotes from James Joyce and J. Robert Oppenheimer and even secret messages. As the bacteria reproduced, the quotes and messages and names remained in the colony’s DNA. […]

“Agriculture as we know it needs to disappear,” Venter said. “We can design better and healthier proteins than we get from nature.” By this, he didn’t mean growing apples in a Petri dish. He meant producing bulk commodities like corn, soy and wheat, that we use in processed products like tofu and cereal. “If you can produce the key ingredients with 10 or 100 times the efficiency,” he said, “that’s a better use of land and resources.”

{ NY Times | Continue reading }

images { 1 | 2 }