nswd



Why pamper life’s complexities when the leather runs smooth on the passenger seat?

37.jpg

Statisticians love to develop multiple ways of testing the same thing. If I want to decide whether two groups of people have significantly different IQs, I can run a t-test or a rank sum test or a bootstrap or a regression. You can argue about which of these is most appropriate, but I basically think that if the effect is really statistically significant and large enough to matter, it should emerge regardless of which test you use, as long as the test is reasonable and your sample isn’t tiny. An effect that appears when you use a parametric test but not a nonparametric test is probably not worth writing home about.

A similar lesson applies, I think, to first dates. When you’re attracted to someone, you overanalyze everything you say, spend extra time trying to look attractive, etc. But if your mutual attraction is really statistically significant and large enough to matter, it should emerge regardless of the exact circumstances of a single evening. If the shirt you wear can fundamentally alter whether someone is attracted to you, you probably shouldn’t be life partners. […]

In statistical terms, a glance at across a bar doesn’t give you a lot of data and increases the probability you’ll make an incorrect decision. As a statistician, I prefer not to work with small datasets, and similarly, I’ve never liked romantic environments that give me very little data about a person. (Don’t get me started on Tinder. The only thing I can think when I see some stranger staring at me out of a phone is, “My errorbars are huge!” which makes it very hard to assess attraction.) […]

I think there’s even an argument for being deliberately unattractive to your date, on the grounds that if they still like you, they must really like you.

{ Obsession with Regression | Continue reading }





kerrrocket.svg